Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population

نویسندگان

  • Juanmei Liu
  • Zi-Hui Tang
  • Fangfang Zeng
  • Zhongtao Li
  • Linuo Zhou
چکیده

BACKGROUND The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. METHODS We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30-80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. RESULTS Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732-0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. CONCLUSION ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

BACKGROUND This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. METHODS AND MATERIALS We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 in...

متن کامل

Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network

Introduction:  It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure.   Materials & Methods: This study utilized a m...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Title: Artificial Neural Network Models for Prediction of Cardiovascular Autonomic Dysfunction in General Chinese Population

1-The manuscript definitely needs to rewrite by native speaker again. 2-The structure of the manuscript is little bit messy, because the discussion section has the "Introduction" materials 3-The conclusion section has very strong statement as a conclusion statement that says " The performans of the ANN model (the manuscript just compared 5 ANN models) with high value predicted CA dyfunction". B...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013